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Abstract

A second order implicit �f Lorentz ion hybrid model with sub-cycling and orbit averaging has been developed
to study low-frequency, quasi-neutral plasmas. Models using the full Lorentz force equations of motion
for ions may be useful for verifying gyrokinetic ion simulation models in applications where higher order
terms may be important. In the presence of a strong external magnetic field, previous Lorentz ion models
are limited to simulating very short time scales due to the small time step required for resolving the ion
gyromotion. Here, we use a simplified model for ion Landau damped ion acoustic waves in a uniform
magnetic field as a test bed for developing e�cient time stepping methods to be used with the Lorentz ion
hybrid model. A detailed linear analysis of the model is derived to validate simulations and to examine
the significance of ion Bernstein waves in the Lorentz ion model. Linear analysis of a gyrokinetic ion
model is also performed, and excellent agreement with the dispersion results from the Lorentz ion model
is demonstrated for the ion acoustic wave. The sub-cycling/orbit averaging algorithm is shown to produce
accurate finite-Larmor-radius e↵ects using large macro-time steps sizes, and numerical damping of high
frequency fluctuations can be achieved by formulating the field model in terms of the perturbed flux density.
Furthermore, a CPU-GPU implementation of the sub-cycling/orbit averaging is presented and is shown to
achieve a significant speedup over an equivalent serial code.

Keywords: Orbit Averaging, Sub-Cycling, �f Method, FLR e↵ects, Implicit Particle-in-Cell, Lorentz Ions,
Magnetized Plasma Simulation, GPU computing

1. Introduction1

Modern research on low-frequency, ion-Larmor-radius scale fluctuations in magnetized plasmas is based2

on gyrokinetic ion models. One advantage for using gyrokinetic ion models, as opposed to models using the3

full Lorentz force equations of motion, is that the analytical elimination of the ion gyration time-scale in4

gyrokinetic models relaxes time step size constraints in numerical implementations. Additionally, gyrokinetic5

simulations accurately model k?⇢i ⇠ O(1) e↵ects without introducing noise associated with ion Bernstein6

waves, where k? is the wavenumber perpendicular to B and ⇢
i

is the ion gyroradius. Gyrokinetic theory,7

however, is based on a number of ordering assumptions which must hold to ensure the accuracy of the8

model. In certain applications where gyrokinetic ordering assumptions may be in questions, for example, in9

the tokamak edge pedestal region where gradient scale lengths can be comparable to the ion-Larmor-radius,10

higher order terms may be important. Extending gyrokinetic ion models for such applications, however, can11

be non-trivial and can lead to challenging numerical implementations [1] [2] [3] [4].12

There has been recent interest in developing models using the full Lorentz force equations of motion for13

ions [5] [6] [7]. Such models o↵er formal simplicity over gyrokinetic models and can provide an important14
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validation tool or replacement for gyrokinetic ion models in applications where higher order terms may15

be important. Since time step size restrictions in simulation models which include kinetic electrons often16

require modern gyrokinetic codes to be run with time step sizes ⌦
i

�t ⇠ 1, the use of models which fully17

resolve the ion gyromotion may be feasible without a large increase in computational e↵ort. Furthermore,18

recent e↵orts in optimizing particle-in-cell (PIC) algorithms for modern computing architectures, such as19

graphics processing units (GPUs), holds promise for handling the more expensive particle integration of the20

Lorentz ion model [8] [9] [10] [11].21

In this paper, we explore an implicit orbit averaging/sub-cycling (OASC) time stepping algorithm which22

may be useful for extending the ability of Lorentz force ion models to simulate longer time scales. This23

algorithm is shown to accurately produce finite-Larmor-radius (FLR) e↵ects at perpendicular wave numbers24

k?⇢i ⇠ O(1) while advancing the fields on a macro time step �T larger than that required to resolve the25

ion gyromotion. The accuracy of the ion gyromotion is preserved by sub-cycling the computational particles26

on a micro time step �t chosen such that ⌦
i

�t ⌧ 1. The algorithm is applied to a model problem for ion27

Landau damped ion acoustic waves in a magnetized plasma. This model problem may be easily extended28

to model the ion temperature gradient (ITG) instability in slab geometry as in [7]. Linear theory for the29

model is derived to validate simulation results. Comparisons are also made with a linear dispersion relation30

obtained from the analysis of a gyrokinetic ion model. The dispersion results show very good agreement31

between the two models for the low frequency ion acoustic wave.32

A notable e↵ect in simulations using Lorentz force ions is the introduction of ion Bernstein waves near33

harmonics of the ion gyro-frequency [12] [13]. These are electrostatic normal modes, which are analytically34

eliminated in gyrokinetic models, but are present when full ion dynamics are included. Linear theory based on35

the Laplace transform method is presented to determine the amplitudes of the normal modes relative to the36

initial perturbation size. The theory predicts ion Bernstein wave amplitudes which are comparable to the ion37

acoustic wave amplitude. Since the ion Bernstein waves are not damped, their presence in simulations may38

be undesirable for studies of low-frequency fluctuations. It is demonstrated that formulating the electrostatic39

field equation in terms of the ion particle flux results in numerical damping for the ion Bernstein waves.40

This paper is organized as follows. In Section 2, our model problem for ion Landau damped ion acoustic41

waves in a magnetized plasma is presented. Section 3 gives the linear theory for the model problem, including42

an analysis to derive information on the amplitudes of the normal modes. Section 4 gives the numerical43

methods used in our simulation model. In Section 5, simulation results are presented to demonstrate the44

numerical propertied of the implicit OASC algorithm and the accurate production of FLR e↵ects at large45

macro time step sizes. Here, a comparison with the gyrokinetic ion model is also presented. A hybrid CPU-46

GPU implementation of our simulation model is discussed in Section 6 and is shown to achieve a speedup47

factor of ⇠ 48 compared to an equivalent serial CPU implementation. Section 7 contains further discussion48

and a summary.49

2. Kinetic Model for Magnetized Ion Acoustic Waves50

Here we introduce the equations for the ion Landau damped ion acoustic wave model. We consider a51

uniform equilibrium distribution rf
0

= 0 in a straight, uniform magnetic field B = B
0

ẑ and a self generated52

electrostatic field E = �r�, where � is the electrostatic potential. The model is 2D-3V, meaning it is defined53

over two spatial dimensions and three velocity dimensions. The spatial dependence of quantities is over the54

two dimensional domain (y, z) 2 [0, L?) ⇥ [0, Lk) and periodicity is assumed in both y and z outside the55

domain with periods L? and Lk respectively. The velocity dependence of quantities is over (v
x

, v
y

, v
z

) 2 R3.56

The ion distribution function f
i

is taken to follow the Vlasov equation:57

@f
i

@t
+ v ·rf

i

+
q
i

m
i

(E+ v ⇥B) ·rv fi = 0, (1)
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where q
i

and m
i

are the ion charge and mass respectively. The electrons are assumed to be adiabatic, with58

number density n
e

following:59

n
e

= n
0

!
1 +

e�

T
e

"
, (2)

where n
0

is the equilibrium density, e is the electron charge, and T
e

is the electron temperature. Finally,60

quasi-neutrality is assumed:61

n ⌘ n
e

= n
i

=

#

⌦v

f
i

dv. (3)

Equations (1)–(3), along with the periodicity assumptions form a closed model. In particular, Eq.(1) can be62

solved for the ion distribution function f
i

, Eq.(3) then used to provide an electron number density n
e

, and63

finally Eq.(2) provides a way to calculate �. A Maxwellian equilibrium distribution is taken, in which case64

the normal modes of the model are a low frequency, magnetized ion acoustic waves and high frequency ion65

Bernstein waves.66

3. Linear Analysis of the Model Problem67

The linearized Vlasov equation is68

@�f

@t
+ v ·r�f + (v ⇥⌦

i

) ·rv �f = � q
i

m
i

E ·rv f0, (4)

where the full ion distribution function is given as f
i

= f
0

+ �f and we have defined ⌦

i

= q
i

B
0

/m
i

ẑ. We69

consider a Maxwellian equilibrium distribution function70

f
0

(v) =
n
0

(2⇡)3/2v3
th

e
� | v | 2

2v 2
th , (5)

where v
th

is the ion thermal velocity. The field model couples to Eq.(4) through the perturbed number71

density �n. We have72

e�

T
e

=
�n

n
0

=
1

n
0

#

⌦v

�fdv. (6)

3.1. Model Parameters73

An analysis of the model equations shows that there are three dimensionless parameters which determine74

the behavior of the system. These are the parallel and perpendicular system lengths normalized by the75

thermal ion gyroradius76

Lk

⇢
i

,
L?
⇢
i

, (7)

and a ratio involving charges and temperatures77

✓ ⌘ q
i

T
e

eT
i

. (8)

We define the thermal ion gyroradius by ⇢
i

= v
th

/⌦
i

and the ion temperature by T
i

= mv
th

. For the linear78

analysis, we are interested in the propagation of plane waves through the plasma, assuming spatial and time79

dependent quantities vary as:80

 (x, t) =  ̃(k,!)ei(k ·x�!t) (9)
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where k = kkẑ + k?ŷ is the wave number and ! is the frequency, which may be complex valued. In this81

case, it is convenient to use the parameters kk⇢i and k?⇢i in place of the first two. We consider cases where82

kk⇢i ⌧ 1 and k?⇢i ⇠ O(1) in order to work in a regime where the validity of gyrokinetic ion models should83

overlap with the Lorentz ion model. A rough estimate for the time scale separation is also determined by84

these parameters. Defining the ion sound speed by c2
s

⌘ q
i

T
e

/eT
i

, the time scale for an ion acoustic wave85

propagating nearly parallel to B is then roughly c
s

kk. The ion gyromotion and Bernstein waves evolve on86

the time scale of ⌦
i

. In terms of our parameters, we have87

p
✓kk⇢i =

c
s

kk

⌦
i

⌧ 1. (10)

3.2. Linear Theory88

The normal modes for the system are studied for the linearized model. The resulting dispersion relation89

is given by90

✏(k,!) = 1� ✓

2

1$

n=�1
Z0

%
!/⌦

i

+ np
2kk⇢i

&

I
n

(k2?⇢
2

i

)e�k

2
! ⇢

2
i = 0 (11)

where Z is the plasma dispersion function of Fried and Conte [14] and I
n

is the nth modified Bessel function91

of the first kind. The solutions of Eq.(11) give the normal modes of the model, which include a low-frequency,92

ion Landau damped ion acoustic wave and undamped ion Bernstein waves near harmonics of the ion gyro-93

frequency. The ion Bernstein waves are a unique feature of the full Lorentz ion model and are not present in94

gyrokinetic ion models. In our numerical simulations with finite k?⇢i, it was found that the Bernstein waves95

had amplitudes comparable to the ion acoustic wave. Since the Bernstein waves are undamped, they were96

found to quickly become dominant in the time histories of �. To validate that this feature of our simulations97

was consistent with the continuous model, we have further developed the linear theory using the Laplace98

transform in time.99

The linear system is studied as an initial value problem using the Laplace transform to determine the100

amplitudes of each normal mode. The Laplace transform method applied to the one dimensional Landau101

problem as an initial value problem is presented in a number of plasma physics texts. See for example,102

Chapter 8 of [15]. The initial condition for the perturbed distribution function is taken to be103

�f(x,v, t = 0) = A
0

f
0

(v)eik ·x . (12)

The Laplace transform pair for a time dependent quantity '(t) is104

'(p) =

# 1

0

'(t)e�ptdt, '(t) =
1

2⇡i

#
�+i1

��i1
'(p)eptdp (13)

where p is complex valued and � can be chosen as any real number which is to the right of all singularities105

of '(p) in the complex p-plane. The complex variable p is related to the complex frequency of a plane wave106

! simply by p = �i!. Equations (4)–(6) with an initial condition given by Eq.(12) can be solved for the107

transformed electrostatic potential. The solution of the Laplace (in time) and Fourier (in space) transformed108

electrostatic potential in terms of the complex frequency is109

e�k

T
e

(p) =
A

0

i
p
2kk⇢i

1'

n=�1
Z

(
ip/⌦i +np

2k" ⇢i

)
I
n

(k2?⇢
2

i

)e�k

2
! ⇢

2
i

✏(k, ip)
. (14)

The time dependent solution of the electrostatic potential can be obtained from the inverse Laplace
transform of Eq.(14), which is given by the contour integral in Eq.(13). The evaluation of this contour
integral is simplified by deforming the contour of integration to the path shown in Figure 1 with a possible
set of poles of �k (p), corresponding to the zeros of ✏(k, ip). Justification for the contour deformation is
given in Appendix B. By examining the deformed contour in Figure 1 b), the time dependent solution of
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� � i1

� + i1

Re(p)

Im(p)

�

•

•

•

•

•

possible poles
of �k (p)

� � i1

� + i1

Re(p)

Im(p)

�↵

•

•

•

•

•

Figure 1: Contour deformation for obtaining Eq.(15). The figure on the left (1a) illustrates the original contour used in the
inverse Laplace transform. The figure on the right (1b) illustrates the deformed contour.

the electrostatic potential can be written as

e�k

T
e

(t) =
$

j

A
j

epj t +
1

2⇡i

! # �↵�i1

��i1

e�k

T
e

(p)eptdp+

# �↵+i1

�↵�i1

e�k

T
e

(p)eptdp+

#
�+i1

�↵+i1

e�k

T
e

(p)eptdp

"
(15)

where {p
j

} in the first term are the simple roots of ✏(k, ip), and110

A
j

= Res

*
e�k

T
e

(p), p
j

+
. (16)

The main contribution in Eq.(15) comes from the first term. Provided that �k (p) decays rapidly as111

Im(p) ! ±1, the second and fourth terms in Eq.(15) will vanish. Furthermore, the third term becomes112

exponentially small compared to the contributions from the poles as t ! 1, leaving the normal modes given113

by the first term as the time asymptotic solution. In Section 5, we numerically solve for the amplitudes of114

the normal modes relative to the initial perturbation size A
0

and compare with the amplitudes found in115

our simulations. This is accomplished by first solving the dispersion relation Eq.(11) numerically for the116

complex frequencies and then evaluating the corresponding residues in Eq.(16) to obtain the amplitudes A
j

.117

4. Numerical Methods118

A number of numerical methods are used to obtain stable, accurate, and low noise simulations of the low119

frequency ion acoustic wave at large time step sizes. Key features of our 2D-3V simulation model include the120

�f method which reduces discrete particle noise levels by solving for small perturbations from a Maxwellian121

equilibrium, a perturbed flux density formulation of the field model which introduces numerical damping122

of high frequency modes, orbit averaging and sub-cycling (OASC) using separate time step sizes for the123

particles and fields, a second order implicit integrating scheme to advance the particle orbits and weight124

equations, and a Picard iterative process to solve the implicit equations.125

4.1. �f method126

The �f method is utilized, which is e↵ective in reducing discrete particle noise by solving for departures127

from an known equilibrium distribution [16] [17] [18] [19] [20]. The assumption is made that f can be128
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separated into a known, time independent equilibrium part and an unknown perturbed part as f = f
0

+ �f .129

Particle weights are defined for each computational particle as w
p

= �f
p

/f
p

⇡ �f
p

/f
0p

, where the subscript130

p indicates an evaluation at the phase space location of particle p. The particle weights evolve according to131

the weight equation, which for linear simulations is132

dw
p

dt
= � q

i

m
i

E

p

·rv p ln f0p. (17)

For the linear �f scheme, the particles’ phase space locations evolve according to their equilibrium trajec-133

tories:134

dx
p

dt
= v

p

(18)

dv
p

dt
= v

p

⇥⌦

i

(19)

Once the particle weights and phase space locations are known, the perturbed number and flux densities at135

grid point X
j

can be calculated as follows:136

�n
j

=
1

|�X|
$

p

w
p

S(X
j

� x

p

) (20)

�(nu)
j

=
1

|�X|
$

p

w
p

v

p

S(X
j

� x

p

) (21)

where |�X| is the cell size and S is the “shape” function [21], which we take to be linear splines.137

4.2. Field Equation Formulations138

Recent numerical analysis of implicit �f models has shown that numerical damping can depend on the139

velocity moments used in the field model equations [22]. Here, we consider two formulations of Eq.(6) to be140

used in the simulation model. These formulations are equivalent in the continuous limit �X ! 0,�t ! 0141

but exhibit di↵erent properties in the discrete models. The first formulation uses the perturbed number142

density directly, and the second formulation uses the continuity equation to give the field model in terms143

of the perturbed flux density. We will refer to these formulations as the perturbed number density form144

(PND) and the perturbed flux density form (PFD). Simulation results presented in Section 5 show that the145

PFD form introduces numerical damping of the ion Bernstein waves, where as, the PND form leaves the146

Bernstein waves undamped. For the PND form, we have simply147

e�⌫
j

T
e

=
�n⌫

j

n
0

, (22)

where ⌫ is the time step index. To derive the PFD form, the partial derivative with respect to time is taken148

in Eq.(6) and the continuity equation is used to give149

@

@t

!
e�

j

T
e

"
= �r · �(nu)j

n
0

(23)

Our baseline time stepping method for the PFD form, without OASC, uses the trapezoidal rule to discretize150

Eq.(23) in time as151

e�⌫
j

T
e

=
e�⌫�1

j

T
e

� �t

2

%

r ·
�(nu)⌫

j

+ �(nu)⌫�1

j

n
0

&

(24)

where the divergence is taken spectrally in Fourier space. The electric field for both field models is also152

computed by taking the gradient of �⌫ spectrally from the discrete Fourier transform. Simulation results153

using these two field equation formulations are presented in Section 5.154
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4.3. Baseline Time Stepping Algorithm155

Our baseline time stepping algorithm to which we apply OASC uses a second order implicit scheme to156

advance the particle positions, velocities, and weight equations. Our motivation for using implicit schemes157

is for the greater stability that is generally o↵ered. In the process of designing our numerical schemes,158

we keep in mind future applications using more complex models that may involve higher frequency modes159

posing severe constraints on the time step size for explicit schemes. For example, in [6], it is known that the160

compressional Alfven wave can be the source of a numerical instability when it is not well resolved. This161

can be restrictive since !/⌦
i

� 1 in low-� plasmas. The following implicit time discretization scheme is162

applied to the ion equations of motion and weight equation to address these di�culties163

x

⌫ = x

⌫�1 +
�t

2

,
v

⌫ + v

⌫�1

-
(25)

v

⌫ = R · v⌫�1 (26)

w⌫ = w⌫�1 � �t

2

.
G⌫(x⌫ ,v⌫) +G⌫�1(x⌫�1,v⌫�1)

/
. (27)

In Eq.(26), the rotation matrix R is defined as164

R =

0

1
cos (⌦

i

�t) sin (⌦
i

�t) 0
� sin (⌦

i

�t) cos (⌦
i

�t) 0
0 0 1

2

3 (28)

which produces the correct gyrophase at each time step, and in Eq.(27) we have165

G⌫ =
q

m
E

⌫(x⌫) ·rv ! ln f
0

(v⌫), (29)

where the evaluation of the electric field at a particle’s position is performed through interpolation as166

E

⌫(x⌫) =
$

j

E

⌫

j

S(X
j

� x

⌫). (30)

The velocity advance may be extended for nonlinear simulations by including half accelerations due to167

E

⌫�1(x⌫�1) and E

⌫(x⌫) before and after the rotation, respectively, similar to the Boris push [23] [21].168

Modification to the weight equation is also needed for nonlinear simulations as in [16].169

4.4. Orbit Averaging and Sub-Cycling170

For the OASC scheme, the electric field and the computational particles are advanced on separate time171

steps [24]. The long term goal of this research is to model low frequency (! ⌧ ⌦
i

) well magnetized172

plasma physics where gyrokinetics is applicable using a direct Lorentz force method. The main issue at173

hand is to accurately model the ion FLR e↵ects without including the ion Bernstein waves which are a174

source of high frequency noise. Because we are interested in low frequency phenomena, we will sub-cycle175

to resolve the ion cyclotron motion, then orbit-average numerically to accurately resolve ion FLR e↵ects.176

Orbit averaging and sub-cycling have been explored previously in the context of multi-scale implicit PIC.177

Besides the seminal orbit-averaging work of B. Cohen and co-workers [25] [24] [26], a multi-scale method was178

developed to advance particles depending on their local accuracy in phase space [27] [28]. More recently an179

exact charge and energy-conserving scheme incorporates a sub-stepping in time algorithm to avoid particles180

tunneling through an electrostatic potential barrier and improves momentum conservation [29] [10] [30]. In181

our algorithm, the micro time step �t is used to resolve the fast gyromotion of the ions and the macro time182

step �T is used to resolve the low-frequency fields. These are chosen such that ⌦
i

�t ⌧ 1, ⌦
i

�T � 1,183

and �T/�t = M for M 2 N. The particle trajectories and weights are sub-cycled on the micro time step184

according to Eqs.(25)–(29) where E

⌫ is replaced with E

(N,⌫) for 1  ⌫  M � 1. We define E

(N,⌫) as the185
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electric field interpolated in time to the micro time step t(N,⌫) from the fields defined at the macro time186

steps tN�1 and tN . A simple linear interpolation is used187

E

(N,⌫) = (1� ⌫

M
)EN�1 +

⌫

M
E

N . (31)

The orbit averaging scheme is derived for the flux form of the field equation Eq.(23). Integrating Eq.(23)188

between macro time steps tN�1 and tN , we have189

e�N

T
e

=
e�N�1

T
e

�r ·
#

t

N

t

N # 1

�(nu)

n
0

dt. (32)

The integral on the right hand side is then approximated using the composite trapezoidal rule190

#
t

N

t

N # 1
�(nu)dt ⇡ �T

2M

(
�(nu)N�1 + 2�(nu)(N,1) + 2�(nu)(N,2) + ...+ 2�(nu)(N,M�1) + �(nu)N

)
, (33)

where the perturbed flux densities �(nu)(N,⌫) are deposited using particle trajectories and weights on the191

micro time step t(N,⌫). We will refer to the right hand side of Eq.(33) as the orbit averaged flux density and192

denote it as h�(nu)iN�1/2. In this notation, our discretized field model is193

e�N

T
e

=
e�N�1

T
e

�r · h�(nu)iN�1/2. (34)

The OASC algorithm is illustrated in Figure 1. Note that the OASC algorithm reduces to the baseline time194

stepping algorithm with the PFD form of the field equation when M = 1.195

(x,v, w)

�(nu)

h�(nu)i

�

tN�1 t(N,1)

... t(N,M�1) tN+1 t(N+1,1)

... t(N+1,M�1) tN+2

Figure 2: Illustration of the OASC algorithm. Particle quantities (x , v , w) are advanced on the micro time steps using a time
interpolated electric field. The flux density ! (nu ) is deposited from the particles at each micro time step to obtain the orbit
averaged flux density ! ! (nu )", which is used to advance " over the macro time step.

4.5. Solution Method for the Implicit Equations196

The OASC scheme is implicit and therefore requires the self consistent solution of the particles and197

electric field at the macro time step tN . There has been recent progress made in e�cient solution methods198

for fully implicit PIC. These e↵orts have focused on the use of Jacobian-free Newton-Krylov (JFNK) solvers199

[31] [32] [29] and preconditioning to accelerate the convergence of the GMRES iterations [33]. The use of a200
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JFNK solver has not been explored in this work but may hold future promise for increased computational201

e�ciency of the algorithm. For our simulation model, we adopt a Picard iteration scheme to solve the202

implicit equations. An initial guess is made for �N and successive corrections to �N are made by repeatedly203

advancing the sub-cycled particle system. This process is carried out until the L2 norm of the residual in204

Eq.(34) is reduced to a specified tolerance. For our simulations, we have taken both the absolute and relative205

tolerances to be 5.0 ⇥ 10�7. For the initial guess, we take the value of � at the previous time step. In the206

tests performed in Section 5, the Picard scheme typically converged in 4-8 iterations, with the number of207

iterations increasing as expected with larger values of �T and k?⇢i.208

5. Simulation Results209

To demonstrate the numerical properties of the algorithms discussed in Section 4 applied to the Lorentz210

ion model, linear simulations are performed and compared to the theory derived in Section 3. Of interest211

are the use of the PFD form to damp the high frequency ion Bernstein waves, the accurate production of212

FLR e↵ects in the OASC algorithm, and the e↵ects of the sub-cycling parameter M in producing accurate213

simulations over long time scales.214

5.1. E↵ects of the Field Equation Formulation on Ion Bernstein Waves215

A notable feature of the Lorentz ion simulation model is the presence of ion Bernstein waves near216

harmonics of the ion gyrofrequency, which are superimposed on the ion acoustic wave. Although consistent217

with the physical model, these are undamped high frequency modes and their presence may be undesirable218

for studies of low frequency phenomena. In addition, Berstein waves are eliminated in gyrokinetic models,219

which may cause di�culty for comparisons with Lorentz ion models. In simulations using the PND form of220

the field model, ion Bernstein waves with large amplitudes were found to be present for finite k?⇢i and to221

quickly obscure the low frequency ion acoustic wave as this parameter was increased.222

In Figure 3, simulations are performed using the PND form of the field model. The amplitudes for the223

ion acoustic wave and the first three Bernstein waves are measured relative to the initial perturbation size224

A
0

for increasing values of k?⇢i and compared to the theoretical amplitudes from Eq.(16). We use the model225

parameters ✓ = 5 and kk⇢i = 6.28⇥ 10�3. The simulations are performed using the baseline time stepping226

algorithm from Section 4.3 with 131072 computational particles, a mesh size of n
y

⇥ n
z

= 16 ⇥ 32, and a227

time step size ⌦
i

�t = 0.125. Both theory and simulations, using the PND form of the field model, show228

Bernstein waves with amplitudes comparable to or exceeding that of the ion acoustic wave for finite k?⇢i.229

In Figure 4, we compare simulations at k?⇢i = 0.3 between the PND and PFD forms of the field model.230

The physical and numerical parameters are taken the same as in Figure 3. The time history of the first231

Fourier mode is plotted, demonstrating the numerical damping of the ion Bernstein waves which is achieved232

only for the PFD form. The di↵erence in the numerical behaviors of the two field model formulations is233

consistent with the numerical analysis in [22]. In this paper, it is shown that numerical dissipation which234

is normally present when using implicit schemes can be absent in the �f method when the field model used235

contains only the perturbed number density as a source term.236

5.2. FLR E↵ects for the Orbit Averaging/Sub-Cycling Algorithm237

An important measure of success for the OASC algorithm is the ability to accurately model FLR e↵ects238

at large time step sizes. This is demonstrated for the ion acoustic wave using the model parameters ✓ = 5,239

kk⇢i = 1.61 ⇥ 10�3 and scanning over values of k?⇢i ⇠ O(1). For these simulations, we use 262144240

computational particles, a mesh size of n
y

⇥ n
z

= 64 ⇥ 64, a macro time step size of ⌦
i

�T = 0.75, and241

sub-cycling parameter M = 18, which corresponds to a micro time step size of ⌦
i

�t = 4.17⇥10�2. In Figure242

5, the dispersion results of the simulations are compared to the exact linear dispersion theory for the Lorentz243

ion model given by Eq.(11). Comparisons are also made with the linear dispersion theory for a gyrokinetic244

ion model, which is presented in Appendix A. The simulations show excellent agreement with the Lorentz245

ion dispersion theory using a macro time step size larger than that required to resolve the gyromotion of246

the ions. Furthermore, the dispersion relation for the gyrokinetic ion model yields nearly identical results247

to that of the Lorentz ion model for the ion acoustic wave.248
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Figure 4: Time histories of the first Fourier mode amplitude of " k . The PND form is used on the left and the PFD form is
used on the right. Numerical damping of the ion Bernstein waves occurs only for the PFD form of the field model, leaving a
clean simulation of the low frequency ion acoustic wave.

5.3. E↵ects of the Sub-Cycling Parameter249

In order to produce accurate simulations over long time scales, su�cient resolution of the ion gyromotion250

on the micro time step is necessary. Convergence tests are performed, varying the sub-cycling parameter,251

M . In the first test, the macro time step is kept fixed at ⌦
i

�T = 1.0 and the sub-cycling parameter, M , is252

increased from M = 1, which corresponds to the baseline time stepping algorithm (without OASC) over the253

macro time step, up to M = 16 which well resolves the ion gyromotion. The time histories of the first Fourier254
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Figure 5: Dispersion results showing FLR e↵ects on the ion acoustic wave using the parameters # = 5.0, kk$i = 1.61 #
10�3,⌦i �T = 0.75, and M = 18 in the OASC algorithm. Data points obtained by solving the gyrokinetic dispersion relation
given in Appendix A are also shown.

mode amplitude of � for increasing values of M in the first test are given in Figure 6 a). As expected, the255

quality of the simulations improves as the sub-cycling parameter is increased. When M is taken too small,256

large inaccuracies in the simulations develop quickly in time. In the second test, the micro time step size is257

kept fixed at ⌦
i

�t = 6.25⇥10�2 and M is increased to give larger values for the macro time step. The time258

histories of the first Fourier mode amplitude of � for increasing values of M in the second test are given259

in Figure 6 b). It is observed that the time histories are nearly identical in each case, demonstrating the260

robustness of the algorithm for large macro time steps, provided there is su�cient resolution at the micro261

time step. For both tests, the same model parameters, particle number, and mesh size are used as in Figure262

5 and k?⇢i = 0.4.263
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Figure 6: Time histories of the first Fourier mode amplitude of " k . On the left (6 a), the macro time step size is fixed at
⌦i �T = 1.0 and the sub-cycling parameter M is increased to improve accuracy for long time periods. On the right (6 b), the
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6. CPU-GPU Implementation264

One promising aspect of the OASC algorithm presented here is that it is amenable to implementation on265

hybrid architecture utilizing graphics processing units (GPUs) or many integrated core co-processors. The266

reason for this is that the particle pushing over the micro time steps and the orbit averaging can be done267

locally on the GPU. The resulting velocity moments can be copied to the CPU memory where a global field268

solve is done. This eliminates the need for communication of particle data between the CPU and GPU. Many269

applications of gyrokinetic simulation are for situation where ⌦
i

�t ⇠ 1. Additionally, the direct Lorentz270

ion method presented here can take advantage of hybrid architectures, as we show below. Similarly [10]271

implemented their energy and charge conserving scheme with sub-stepping and saw speedups over a factor272

of 100 compared to an equivalent serial CPU implementation. To demonstrate the feasibility of utilizing273

hybrid architectures with sub-cycling and orbit averaging, we have implemented our test bed code on one274

node of the Titan supercomputer at Oak Ridge National Laboratory. We note this is simply a first step275

to show the promise of the algorithm. Many node parallelization using MPI is not implemented. Future276

implementations of the algorithm for solving more realistic turbulence problems will require many nodes277

(> 100). We also note that MPI optimization is well understood and widely used in PIC codes.278

Our CPU-GPU version of the OASC algorithm is implemented in single-precision using CUDA Fortran.279

Interpolation of field values, particle pushes, and deposits are all performed locally on the GPU, and the field280

solve is performed on the CPU. The particle data is deposited to arrays stored in global memory using the281

atomicadd function to avoid race conditions, which can occur when more than one thread simultaneously282

tries to access the same memory location [34]. Although the use of atomic functions can delay the parallel283

executions in the code, the reduced communication cost between the device and host which is gained by284

keeping the particle data on the GPU outweighs the serialization that results from the atomic additions.285

Optimizations to the deposits, including the use of particle sorting, storing multiple copies of the domain in286

shared memory, and partitioning the grid space into “tiles” have been explored in [11] [10]. As a first step287

in utilizing GPUs, we focus on simplicity of implementation; however, these optimizations are promising for288

future work to reduce the run-time of the deposit phase in our algorithm.289

To benchmark the CPU-GPU implementation, we compare run-times between the single-precision CPU-290

GPU code and an equivalent single-precision serial CPU code running on the Titan supercomputer. Both291

codes are compiled with the PGI 15.3.0 compiler using the -fast optimization flag. The GPU used is an292

NVIDIA Tesla K20X, which utilizes the NVIDIA KeplerTM architecture and has a peak theoretical compute293

performance of 3.95 TFLOPs in single-precision. The host machine is a 16-core 2.2 GHz AMD OpteronTM

294

6274 processor, for which one core is utilized for both the CPU-GPU and CPU serial implementations.295

In Figure 6, the time per particle per sub-cycle is reported in nano-seconds for the CPU-GPU and296

CPU serial codes as the number of particles is increased. The test problem uses parameters ✓ = 5.0,297

kk⇢i = 1.61 ⇥ 10�3 and k?⇢i = 0.4. The mesh size is n
y

⇥ n
z

= 64 ⇥ 64, and the time step size is298

⌦
i

�t = 6.25 ⇥ 10�2 for a sub-cycling parameter M = 1, which corresponds to the baseline time stepping299

algorithm. The largest speedup observed is a factor of 46.9 when 222 particles are used.300

In Figure 7, we examine the e↵ects of the sub-cycling parameter, M , on the run-time of the two imple-301

mentations. We run with a macro time step size of ⌦
i

�T = 0.75 for 217 � 219 particles, keeping all other302

parameters the same as for Figure 6. An additional speedup is observed in the CPU-GPU code as M is in-303

creased, due to the increased amount of computation that can be performed on the GPU per communication304

to the CPU. This speedup is more significant for lower numbers of particles, for example, when using 217305

particles, a speedup factor of 3.9 is observed in the CPU-GPU code for M = 32 compared to M = 1. The306

serial CPU code; however, is near peak performance for all tests shown in Figure 7. The largest speedup307

factor observed between the CPU-GPU and serial CPU codes when increasing M is 47.9 for 219 particles at308

M = 32.309

7. Summary and Conclusions310

In this study, we have explored an implicit �f particle-in-cell method with orbit averaging and sub-311

cycling algorithm, which is applied to a magnetized plasma simulation model for ion acoustic waves using312
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the full Lorentz force equations of motion for the ions. This algorithm shows promise to extend e↵orts313

in the development of direct Lorentz force methods to model low frequency phenomena in well magnetized314

plasmas. In particular, we were able to produce accurate FLR e↵ects over long time scales in our simulations315

using a full Lorentz force ion model. Additionally, theory has been derived to study the significance of ion316

Bernstein waves in our model. Ion Bernstein waves are of interest, since they are unique to models using317

the full Lorentz force equations of motion and are analytically eliminated from gyrokinetic ion models. It is318

found that the ion Bernstein waves can have a significant e↵ect on simulations, however, numerical damping319

can be introduced to the ion Bernstein waves when the field equation is formulated in terms of the perturbed320

flux density in the �f method. This can be beneficial for simulations of low-frequency fluctuations, since321

the ion Bernstein waves have significant amplitudes for finite k?⇢i, and can obscure physics on longer time322

scales. Finally, a CPU-GPU implementation of the OASC algorithm has been developed and has achieved a323

speedup by a factor of ⇠ 48 compared to an equivalent serial CPU only code. Low communication between324

the CPU and GPU can be achieved by transferring only grid quantities, making the OASC algorithm well325
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suited to implement on hybrid architectures. Our testbed model of the ion acoustic wave is of interest, since326

a similar model has been used in the study of the ITG instability in slab geometry [7]. Extending the OASC327

algorithm to simulate the ITG instability in a toroidal flux tube geometry will be the subject of future work.328

Appendix A. Gyrokinetic Dispersion Relation329

We consider a gyrokinetic model similar to Eq.(1) in order to compare the linear theory with that of
the Lorentz ion model. For the gyrokinetic model, we consider the ion guiding center distribution function
f
i

(R, µ, uk, t), where R is the guiding center coordinate, µ is the magnetic moment, and vk is the velocity
component parallel to the magnetic field. The gyrokinetic Vlasov equation [35] for f

i

written in these
coordinates and keeping only the terms relevant for a straight, uniform B field is

@f
i

@t
+

%

vkb̂+
Ē⇥ b̂

B

&

· @fi
@R

+
q
i

m
i

Ē · b̂ @fi
@vk

= 0, (A.1)

where Ē is defined in terms of a gyroaveraging operator as

Ē(R) =
1

2⇡

4
E(x = R� ! )d⇢, (A.2)

and ! is parameterized by the gyrophase as

! =

p
2Bµ

⌦
i

(sin'x̂+ cos'ŷ) (A.3)

for 0  ' < 2⇡. The gyrokinetic quasineutrality condition is

n
e

(x) = n̄
i

(x)� q
i

T
i

(
�(x)� �̃(x)

)
, (A.4)

where

n̄
i

(x) =
1

2⇡

4 ! # 1

0

# 1

�1
f
i

(R = x� ! , vk, µ)dvkBdµ

"
d⇢ (A.5)

and

�̃(x) =
1

2⇡

4
�̄(R = x� ! )d⇢ (A.6)

�̄(R) =
1

2⇡

4
�(x = R+ ! )d⇢. (A.7)

We assume an adiabatic response for the electrons as Eq.(2) to solve for the electrostatic potential. Taking
f
i

= f
0

+ �f , with

f
0

(vk, µ) =
n
0

(2⇡)3/2v3
th

e
�

v 2
"

2v 2
th e

� Bµ
v 2

th (A.8)

and linearizing, we have
@�f

@t
+ vkb̂ · @�f

@R
= � q

i

m
i

Ē · b̂@f0
@vk

. (A.9)

To derive the gyrokinetic dispersion relation, we take a plane wave ansatz for all spatial and time dependent
quantities and use the following identities when evaluating the gyroaveraging operators:

1

2⇡

#
2⇡

0

eia cos'd' =
1

2⇡

#
2⇡

0

eia sin'd' = J
0

(a) (A.10)
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where J
0

is the zeroth Bessel function of the first kind. The resulting dispersion relation for the gyrokinetic
model is given by

✏(k,!) = 1� ✓

2
Z0

%
!/⌦

ip
2kk⇢i

&

I
0

(k2?⇢
2

i

)e�k

2
! ⇢

2
i + ✓

(
1� I

0

(k2?⇢
2

i

)e�k

2
! ⇢

2
i

)
= 0. (A.11)

The first two terms are identical to the first two terms of Eq.(11), and the third term is O(k2?⇢
2

i

), coming330

from the polarization response in the quasineutrality condition. Ion Bernstein waves are no longer present331

in the gyrokinetic model. The gyrokinetic dispersion relation is solved numerical to make comparisons to332

the Lorentz ion model in Figure 5.333

Appendix B. Justification for Contour Deformation in the Inverse Laplace Transform334

The justification for the contour deformation used to obtain Eq.(15) follows from the analyticity of the
function G defined by the sum

G(u; a, b) =
1$

n=�1
Z(u+ an)I

n

(b)e�b. (B.1)

where u is a complex variable and a and b are real parameters. Here Z is the plasma dispersion function of335

Fried and Conte, which is analytic over the whole complex plane, and I
n

is the modified Bessel function of336

the first kind. To prove the analyticity of G, we begin with the following lemma.337

Lemma B.1. The plasma dispersion function is bounded by a function depending only on Im(w) as

|Z(w)|  2(1 +
p
⇡eIm(w)

2
) (B.2)

for all w 2 C.338

Proof. We begin with an integral definition for Z, which is valid for all complex arguments

Z(w) = 2ie�w

2
#

iw

�1
e�t

2
dt. (B.3)

Setting w = x+ iy and taking the contour to be the straight path from w = �1 to w = �y along the real
axis, joined with the straight path from w = �y to w = �y + ix parallel to the imaginary axis, we have

Z(x+ iy) = 2ie�(x+iy)

2
! # �y

�1
e�s

2
ds+ i

#
x

0

e�(y�is)

2
ds

"
. (B.4)

From this expression, the following bound is readily obtained:

|Z(x+ iy)|  2

# �y

�1
ey

2�s

2
ds+ 2

# |x|

0

es
2�x

2
ds. (B.5)

The first integral can be bounded by extending the upper limit of integration to +1. For the second integral,
we have # |x|

0

es
2�x

2
ds 

# |x|

0

esx�x

2
ds =

1� e�x

2

|x| . (B.6)

This function is bounded at x = 0, since 1� e�x

2 ⇠ O(x2). In addition, it remains bounded for all x 2 R,
since

1� e�x

2

|x| =

5 |x|
0

2te�t

2
dt

|x| 
p
2e�1/2 < 1. (B.7)

The inequality then follows.339
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Theorem B.1. The series of analytic functions

1$

n=�1
Z(u+ an)I

n

(b)e�b (B.8)

with a, b 2 R is uniformly convergent over the domain in the complex plane defined by D = {u 2 C :
�y

0

< Im(u) < y
0

} for any y
0

> 0. Since uniform convergence of a series of analytic functions guarantees
analyticity of the sum, the function G is an analytic function of u over D. Furthermore, the series of
analytic functions

1$

n=�1
Z0(u+ an)I

n

(b)e�b. (B.9)

also converges to an analytic function in D, which is equal to the derivative of G.340

Proof. The proof follows from Lemma B.1 and the Weierstrass M-test. Each term in the series is bounded
as

|Z(u+ an)I
n

(b)e�b|  2(1 +
p
⇡eIm(w)

2
)I

n

(b)e�b  2(1 +
p
⇡ey

2
0 )I

n

(b)e�b (B.10)

in D. Furthermore, the modified Bessel function series gives

1$

n=�1
2(1 +

p
⇡ey

2
0 )I

n

(b)e�b = 2(1 +
p
⇡ey

2
0 ) < 1. (B.11)

The Weierstrass M-test therefore guarantees uniform convergence of the series. The analyticity of G in D341

follows directly from the uniform convergence of its series definition. Uniform convergence of the series also342

allows term by term di↵erentiation to obtain a series which converges to the derivative of the sum in D.343

This follows from a standard theorem in complex analysis. See, for example, Chapter 5 of [36].344

The contour deformation is justified since �k (p) can be expressed as:

e�k

T
e

(p) =
A

0

i
p
2kk⇢i

G( ip/⌦ip
2k" ⇢i

; 1p
2k" ⇢i

, k2?⇢
2

i

)

1 + ✓

2

G0( ip/⌦ip
2k" ⇢i

; 1p
2k" ⇢i

, k2?⇢
2

i

)
. (B.12)

Since the proof in Theorem B.1 applies to an arbitrarily large portion of the complex plane, we consider in345

particular the domain D0 = {p 2 C : �R
0

 Re(p)  R
0

}, where R
0

is chosen such that R
0

> max(↵,�),346

as illustrated in Figure B.1. Then D0/{p
j

} defines a domain in which the contour of Figure 1 a) can be347

continuously deformed into that of Figure 1 b), without crossing any singularities of �k .348
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