
Gyrokinetic �f simulation of the collisionless and semicollisional tearing
mode instability

W. Wan, Y. Chen, and S. E. Parker
University of Colorado, Boulder, Colorado 80309

(Received 18 August 2004; accepted 6 October 2004; published online 14 December 2004)

The evolution of collisionless and semicollisional tearing mode instabilities is studied using an
electromagnetic gyrokinetic �f particle-in-cell simulation model. Drift-kinetic electrons are used.
Linear eigenmode analysis is presented for the case of fixed ions and there is excellent agreement
with simulation. A double peaked eigenmode structure is seen indicative of a positive ��. Nonlinear
evolution of a magnetic island is studied and the results compare well with existing theory in terms
of saturation level and electron bounce oscillations. Electron-ion collisions are included to study the
semicollisional regime. The algebraic growth stage is observed and compares favorably with theory.
Nonlinear saturation following the algebraic stage is observed. © 2005 American Institute of
Physics. [DOI: 10.1063/1.1827216]

I. INTRODUCTION

Tearing mode instabilities play an important roll in toka-
mak discharges. The basic process is the antiparallel mag-
netic field lines break and reconnect in the plasma to form
magnetic islands. The perturbed vector potential is symmet-
ric with respect to the central layer. The tearing mode insta-
bility can be described by the tearing mode parameter ��,
first introduced by Furth et al.,1 where ���0 means unstable
and ���0 means damping. Recently there have been many
studies on other stabilizing and destabilizing mechanisms
that affect the tearing. Especially for ���0, where an extra
instability drive is needed to counteract the damping caused
by negative ��. These mechanisms include destabilizing ef-
fects such as the bootstrap current for high pressure plasma
which leads to neoclassical tearing mode,2,3 and drift effects-
(see, for example, Ref. 4) which are mainly stabilizing and
lead to the drift tearing mode5 especially in the case of small
magnetic islands.

This paper focuses on simulation of the classical tearing
mode instability caused by positive ��. Originally the insta-
bility was studied using resistive magnetohydrodynamics
(MHD) theories,1,6–14 in which resistivity is essential in the
central layer, however, the outer regions are assumed nonre-
sistive. The linear growth rate is then dependent on �� and
resistivity. Hazeltine et al.15 applied kinetic theory with col-
lision operators and unified the previous MHD calculations.
Later, Drake and Lee16,17 extended the kinetic tearing mode
theory to the collisionless regime, and thus the problem is
divided into three regimes: collisionless, where the linear
growth rate is much larger than collision frequency, i.e., �
��c; semicollisional regime where ���c and collisional
where �c is large. The kinetic point of view of the basic
physical process is that a perturbed current is produced by
the induced electric field around the central layer, and this
current drives tearing mode instability, thereby causing mag-
netic reconnection.

Kinetic simulations of collisionless tearing mode was
first carried out by Katanuma and Kamimura18 with a full
kinetic particle code. Sydora19 does the simulation using

gyrokinetic-Vlasov equation, and applied realistic mass ratio
�mi /me=1837� and long time scale runs. Recently, Ricci et
al.20 studied the simulation of magnetic reconnection with an
implicit particle-in-cell code in the limit of weakly magne-
tized plasma.

Our approach is to use a recently developed gyrokinetic
�f particle-in-cell code21,22 to study the tearing mode. Using
the �f method allows accurate linear behavior and very clean
nonlinear saturation. This simulation can use realistic physi-
cal parameters and can be pushed to box sizes a few hun-
dreds �i in the radial direction. The �f method is used to
keep noise low. The fully nonlinear gyrokinetic equation for
ions and drift kinetic equation for electrons are solved. We
restrict our study to two dimensions by setting kz=0.

Another result here is a pitch-angle scattering collision
operator in the electron drift kinetic equation is used to study
the tearing mode instability in the semicollisional regime. In
this regime the nonlinear evolution of the tearing mode has
three stages: early linear growth; then as the exponential
growth slows down there is a stage in which the width of the
magnetic island grows algebraically with time;7,17 and the
nonlinear saturation.9,13,14 Our simulation results clearly
show the algebraic growth stage, as well as the following
final nonlinear saturation.

II. SIMULATION MODEL

A. The current pro�le

The physical current profile is similar to previous
investigations.18,19 We assume there is an equilibrium slab
current in the z direction along a strong guiding field Bz0,
with

Jz0�x� = − eneu0�x� = C1enee
−�x − Lx/2�2/a2. �1�

a is the half-width and C1 is the amplitude of the current, for
which Refs. 18 and 19 have used the electron thermal veloc-
ity, i.e., C1=−vte, but any value can be used. For simplicity,
we have set Ti=Te=mevte

2 . An ion-electron mass ratio of
1837 is assumed throughout the paper.
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In addition to the guiding field Bz0, the equilibrium cur-
rent Jz0 generates a field By0�x� which has antiparallel field
lines across x=Lx /2, shown in Fig. 1. The form of By0 is

By0�x� =
1
2
eneC1�0a�� erf� x − Lx/2

a
� , �2�

where the erf�x� is the error function.
The perturbed magnetic field can be represented by a

vector potential Ãz�x ,y , t� through

�B = � � �Ãzẑ� = �Bxx̂ + �Byŷ . �3�

The boundary condition is periodic in the y and z direc-
tions and for x direction we have conducting wall boundary
conditions:

A�x� = ��x� = 0 for x = 0 and x = Lx. �4�

There is no external electrostatic field and the total vector
potential is Az=Az0+ Ãz, Az0 is induced by the equilibrium
current that gives the By0 field and satisfies the boundary
condition Az0=0 at x=0 and x=Lx. As mentioned earlier, we
restrict our present study to two dimensions by keeping only
the kz=0 mode.

Since By0�Bz0, we can assume the parallel direction is
the z direction and then the equilibrium electron distribution
function is

F0�x,V� =
1

�2��3/2vt
3e

−v
�

2 /2vt
2
· e−�v� − u0�x��2/2vt

2
, �5�

after integration over the perpendicular plane we have

f0�x,v�� = 2��
0

�

F0�x,V�v�dv� =
1

�2�vt

e−�v� − u0�x��2/2vt
2
.

�6�

However, in the simulation code we use the canonical mo-
mentum p� rather than v� coordinate to eliminate difficulties
with finite differencing �A /�t.21 With p� defined by

p� = v� +
q
m
Ãz, �7�

the actual zeroth-order distribution function for simulation is
then

f0�x,p�� =
1

�2�vt

e−�p� − u0�x��2/2vt
2
. �8�

B. Electron drift kinetic equation

We begin with the total electron distribution function

fe = f0�x,p�� + �f , �9�

where d�f�x ,p�� /dt=−df0�x ,p�� /dt. The electron drift-
kinetic equation for �f is then

��f
�t

+ VG · � �f + ṗ�

��f
�p�

= − �v�

�B�

B0
+
E � b̂
B0

� · � f0 − ṗ�

�f0
�p�

. �10�

The terms on the left-hand side can be evaluated by follow-
ing particle trajectories, i.e., method of characteristics. VG
is the guiding center velocity,

VG � v��ẑ + By0

B0
ŷ� + v�

�B

B0
+
E � b̂

B0
. �11�

b̂ is the direction of magnetic field so that

b̂ = ẑ +
By0

B0
ŷ . �12�

We should also note that in Eqs. (10) and (11) the b̂ and B0
are only for the equilibrium magnetic field, the perturbed
magnetic field is not included. The equation of motion for ṗ�

is

ṗ� =
dv�

dt
+

q
me

�Ãz

�t
+

q
me

VG · � Ãz

=
q
me

E� +
q
me

�Ãz

�t
+

q
me

VG · � Ãz

= −
q
me

����� +
q
me

VG · � Ãz. �13�

FIG. 1. The equilibrium antiparallel magnetic field in y direction.
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III. EIGENMODE ANALYSIS

Here, an eigenmode analysis of the collisionless linear
tearing mode is given. According to Drake and Lee’s
theory,16 in the collisionless and semicollisional limit, the
perturbed electrostatic potential can be neglected, i.e., �

= �̃=0. The ion motion can be neglected as well since the
half-width of the perturbed current � is much less than �i.
We will test this statement later in simulation but for now we
accept �̃=0 and eliminate ions response, then solve the lin-
earized electron drift kinetic equation.

After linearizing Eq. (10), it becomes

��f
�t

+ v�

By0

B0

��f
�y

+ v�

��f
�z

= �− v�u0��x�
�Bx

B0
+ v̇��me�v� − u0�x��

Te
f0�x,v�� . �14�

The E�B terms are neglected by assuming �̃=0. We can
then write the �Bx and and v̇� in terms of Ãz in Eq. (14),

�Bx =
�

�y
Ãz �15�

and

v̇� = −
e
me

Ẽ� =
e
me

�

�t
Ãz. �16�

Writing Ãz as Ãz�X , t�= Ãz�x�ei��kyy+kzz�−�t� and using

�

�y
→ iky,

�

�z
→ ikz,

�

�t
→ − i� , �17�

Eq. (14) becomes

�f�x,v�� =
1

� − v��kz + By0ky/B0�
� e�

Te
�v� − u0�x��

+
mky
Te

v��v� − u0�x��u0��x�� f0Ãz�x� . �18�

Ãz is induced by the perturbed current J̃z through the
Ampère’s law, and for the case that ions motion can be ne-
glected the current is from electrons only:

�
�

2 Ãz = − �0J̃z = �0n0e�
−�

�

dv�v��f�x,v�� . �19�

With Eqs. (18) and (19), kz=0, a second-order ordinary dif-
ferential equation is obtained for Ãz�x�,

d2

dx2
Ãz�x� + q�x�Ãz�x� = 0, �20�

where

q�x� = − ky
2 +

�0n0e
By0kyTe/B0

�u0�x��e� + mkyu0��x�u0�x���V1�

+ �e� + 2mkyu0��x�u0�x���V2� + mkyu0��x��V3�� .

�21�

We have defined V�v�−u0�x� and the integrals

�Vn� �
1

�2�vt
�
−�

�

dV
Vne−V

2/2vt
2

V + u0�x� − �B0/By0ky
�22�

can be integrated analytically.
We can numerically solve Eq. (20) as an eigenvalue

problem for �, using a shooting method, given Ã�x�=0 at
x=0 and x=Lx. It turns out that for the physical parameters,
� is purely imaginary, therefore the linear growth rate is just
�k=� / i.

The procedure here is very similar to that of Katanuma
and Kamimura,18 but in our result the eigenfunction of Ãz has
a double peaked structure at the center, shown in Fig. 2,
which is consistent with the fact that the tearing mode pa-
rameter,

�� = � �

�x
Ãz�Lx

2
+ �� − �

�x
Ãz�Lx

2
− ���� Ãz�Lx

2
�

is positive, where � is the width of the central layer. ��

�0 is the condition of unstable tearing mode. For certain
parameters Eq. (20) does not have an eigenvalue or eigen-
function, this corresponds to a stable system in simulation.
The double peaked structure is observed for all the unstable
tearing mode systems.

In Fig. 3 we compare the linear growth rate from small
box simulations to the eigenmode result. This figure had
been previously published in Ref. 22. We change kya by
changing a, the half-width of the equilibrium current, and
ky=2� /Ly is fixed. In both collisionless and collisional linear
theories,1,16,23 �� is determined by the two outer regions,
which can be approximated as collisionless and ��a is a
function of kya only.

In Fig. 4 we plot the Ãz�x ,y� from simulation at y
=Ly /2, and compare to the real part of the eigenfunction
Ãz�x�. Both of them have the double peaked structure. Excel-
lent agreement between the linear eigenmode theory and par-
ticle simulation is shown in Fig. 4.

FIG. 2. Ãz�x� as the eigenfunction. Solid line, the real part, dotted line, the
imaginary part, and dashed line, the absolute value. Plot is scaled to the unit
that RAz�Lx /2�=1.
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IV. SIMULATION RESULTS OF THE COLLISIONLESS
TEARING MODE

A. Linear growth rate

According to the linear theories16,18 derived from the
electron drift kinetic equation, the collisionless linear growth
rate is

�k =
kyvte��

2k0
2ls

, �23�

where vte is the electron thermal velocity, k0
−1=c /�pe and ls is

the magnetic shear length about x=Lx /2,

ls �
Bz0

�By0�x�/�x
. �24�

Equations (23) and (24) make it clear that the collisionless
linear growth rate is proportional to the amplitude of antipar-
allel magnetic field that induces the tearing mode instability,
i.e., �k�By0�0� /Bz0. This result is observed in the eigenmode
analysis and in simulation, shown in Fig. 5.

We see that for this 10�i�10�i box size, our simulation
result with fixed ions and �=0 still agree with the eigen-
mode analysis, but not as well as for the 2.5�i�6.28�i small
box simulation. This is due to the limit of grid points we
have in x direction. In eigenmode analysis we have thou-
sands of grid points in x but in simulation we have only 64,
if we increase the number of grid points and number of par-
ticles we do have better agreement, but simulations become
much more computationally demanding.

Simulation results with the full gyrokinetic ions response
are also shown in Fig. 5. The growth rate is higher than for
the case of fixed ions and �=0 simulation. This fact has also
been found in Ref. 18 and is due to the electrostatic field �.
The E�B drift of electrons causes a perturbed current in the
z direction J̃zef in addition to the J̃z caused by the induced
electric field. Thus, the total perturbed current is increased
and results in a higher growth rate.

For the results presented here, neglecting the ion re-
sponse is reasonable for the small box simulations with a
=0.5�i. In such a case, with or without the ion response there
is almost the same linear growth rate and nonlinear satura-
tion level.

FIG. 3. Linear growth rate as a function of kya, compared to the eigenmode
analysis. Lx=2.5�i, Ly=6.28�i, �=0.1%, C1=−vte. a is varied and ky
=1.0�i

−1 is fixed.

FIG. 4. Eigenfunction of Ãz�x�, solid line is from simulation, and dotted line
is from eigenmode calculation. Lx=Ly=10�i, �=1%, a=0.5�i, and C1
=−0.14vte.

FIG. 5. Linear growth rate is proportional to amplitude of By0. Lx=Ly
=10�i, a=0.5�i, and �=1%. Amplitude of equilibrium current is varied to
give different values of By0.
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B. Nonlinear saturation level and the electron bounce
frequency

Next, we discuss the nonlinear simulation results and
how they compare with existing theory. Since Az�x ,y�

=Az0�x ,y�+ Ãz�x ,y� is constant along a field line, the half-
width of the magnetic island w is determined by Ãz. In as-
suming that Ãz is constant across the central layer, i.e.,
Ãz�x ,y�= Âz cos�kyy�, where Âz is the amplitude of the per-
turbed vector field, Refs. 23 and 17 show

w = 2�Âzls
Bz0

. �25�

In Fig. 6, the time evolution of w is plotted using Eq. (25) as
a solid line, where ls is calculated using Eq. (24). The dotted
line is a direct measure of w from the simulation, where we
have used the fact that the “boundary” field line across the y
axes is at the maximum and minimum value of Ã�0,y�. A
square waveform appears in this diagnostic because we have
only 32 grid cells in x.

As the island grows, eventually w��L, and tearing
mode instability enters the nonlinear phase. In this phase the
tearing layer grows with the width of the island, thus the
growth rate has to decrease so that the released magnetic
energy can heat the larger number of particles inside the
layer. Quantitatively, the saturation level of collisionless non-
linear tearing mode is predicted in Ref. 17 as

w =
��

2k0
2G

, �26�

where G=0.410 is a constant. To verify the nonlinear theory
we combine Eq. (26) with Eq. (23) to get the relation of
nonlinear saturation level and the linear growth rate

w =
�kls

kyvteG
. �27�

We can calculate �k using eigenmode analysis and then use
Eq. (27) to calculate the theoretical value of w at saturation
level. For the case of Fig. 6 theoretical value of w is 0.597�i
and from simulation it is 0.585�i, so the nonlinear saturation
level is well verified. Oscillations in Fig. 6 after saturation
are due to the bounce motion of trapped electrons in the
island, the frequency is17

�b = kvtew/2ls. �28�

Combining with Eq. (27) we obtain the following bounce
frequency:

�b = �k/2G = 1.22�k. �29�

From Fig. 6 the frequency is about 0.4�i and from Eq. (29)

it is about 0.5�i. Reference 18 also noted the fact that �b
��k.

V. SIMULATION RESULTS OF THE SEMICOLLISIONAL
TEARING MODE

In this section, initial studies of the semicollisional tear-
ing mode are presented. We add a Lorentzian collision op-
erator for electron-ion collisions to the electron drift kinetic
equation (10):21

�fe
�t

+ VG · � fe + ṗ�

�fe
�p�

= CL�fe� . �30�

The operator is

CL�fe� = �c
1
2

�

��
��1 − �2�

�

��
fe� , �31�

where �=v� /v is the pitch-angle parameter and �c the colli-
sion frequency. �c is generally dependent on v, but in our
simulation �c is taken as a constant parameter, to be consis-
tent with Ref. 17. The system is called “collisionless” when
�k��c and “semicollisional” when �k��c.

To determine the form of the collision operator, use fe
= f0+�f , so that

CL�fe� = CL�f0�x,p��� + CL��f� , �32�

where f0 is the the shifted Maxwellian distribution function
(8). The second term is implemented using the Monte Carlo
method.21 In calculating CL�f0�x ,p��� we only keep the term
that is proportional to Ãz, and the result is

CL�f0�x,p��� =
1
2
e
T
Ãz�cf0�x,v���u0me

T
�v2 − v�

2� − 2v��1
+
u0me

T
�v� − u0�� +

u0me

T
�v2 − v�

2��1
+
u0me

T
�v� − u0��� . �33�

For the �v2−v�
2� terms in the Eq. (33), from B�+mev�

2 /2
=mev

2 /2 we have v
2−v�

2=2B� /me.

FIG. 6. Nonlinear evolution of the magnetic island width. Dotted line is
measured directly from simulation and solid line is derived from the ampli-
tude of Ãz. Lx=2.5�i, Ly=6.28�i, �=0.1%, a=0.5�i, and C1=−vte.
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The most significant character of collisional tearing
mode is that there is an algebraic growth of the magnetic
island in the nonlinear stage, as predicted theoretically by
Rutherford7 with MHD theory and by Drake and Lee17 with
kinetic theory. This algebraic growth stage has even been
observed experimentally by Zhang et al.24 for the evolution
of the m /n=2/1 tearing mode in the Texas Experimental
Tokamak.25

After the linear stage, the effective nonlinear growth rate
becomes smaller, and when ���c the tearing mode enters
the algebraic stage. Reference 17 predicts that

��t� =
�c��

2k0
2Gw�t�

. �34�

Since ��t�=d ln Âz /dt, Eq. (25) yields

dw
dt

=
�c��

4k0
2G

, �35�

showing that the magnetic island width grows algebraically
at this stage. Note this expression of dw /dt appears to be
more accurate than the dw /dt=��c2 /16G equation as in Ref.
17, since it indicates that dw /dt is proportional to �c and this
is confirmed by the simulation results presented here. The
tearing mode parameter �� is theoretically the same for both
the collisionless and the semicollisional tearing mode, since
it is determined by the two outer regions, which are taken to
be collisionless. In deriving Eq. (34) Ref. 17 has used the
linear ��, which is a constant. For a more strict approach we
should apply the nonlinear �� here, knowing the fact that the
nonlinear �� decreases as the island width increases.9,26

However, from the simulation results, we find that unlike
Ref. 26, the nonlinear �� here does not decrease algebra-
ically with the island width. In fact although it decreases
much faster near the saturation and finally becomes negative,
the nonlinear �� changes little during the algebraic growth
stage, so in calculating Eq. (35) we can still use the linear ��.

To quantitatively compare Eq. (35) with simulation re-
sults, again, we need to rewrite it in terms of the collisionless
linear growth rate �k, this is done by combining Eq. (35)

with Eq. (23), to obtain

dw
dt

=
�c�kls
2Gkyvte

. �36�

Condition for the validity of Eq. (34) and hence Eq. (36)

is

�sc � w � a , �37�

where �sc is the half-width of J̃z of the linear semicollisional
tearing instability and is related to its collisionless counter-
part as �sc��k��c /�k�

2/3.16 Since for the semicollisional
tearing mode �k��c, to ensure Eq. (37) we need a small �k
(�k��i is the condition for tearing mode to neglect ions
response). According to the collisionless linear theory �k
�1/k0

2a, then Eq. (37) requires

1/k0
2 � a2. �38�

Since k0
−1=c /�pe and ��i / �c /�pe��

2=�mi /me, Eq. (38) be-
comes

�
mi

me
� ��i

a
�2. �39�

Because of this, our code is well suited to observe the alge-
braic growth stage in the semicollisional tearing mode. For
simulations with Lx up to 10�i, a is generally smaller than or
comparable with �i, then Eq. (39) means �mi /me�1, and the
so-called “high �” problem of gyrokinetic PIC simulation
has just recently been solved and implemented in our code.21

In Fig. 7 we present results with a 10�i�10.28�i simu-
lation of the nonlinear semicollisional tearing mode. a=�i,
�=1%. We have made the equilibrium current small so that
the linear growth rate of the collisionless tearing mode from
eigenmode analysis is �k=0.009�i, which is comparable to
�c=0.003�i. From about t=600�i

−1 to t=2800�i
−1 we see a

clear algebraic growth stage. Linear fitting of this stage gives
dw /dt=1.48�10−4�i�i. The theoretical value can be calcu-
lated using Eq. (36), the result is dw /dt=1.51�10−4�i�i, in
good agreement with simulation.

The nonlinear saturation level of the collisionless tearing
mode with these parameters is at w=0.14�i. Theoretically,

17

at this level w��k (in our model, w=2.4�k actually). Since
�k��sc��k /�c�

2/3, we can see from Fig. 7 the algebraic
growth starts well after the collisionless saturation level,
where w��sc is satisfied.

In Fig. 8, we show the dw /dt results with different col-
lision frequencies ranged from �c=0.0005�i to �c
=0.004�i. The simulation results agree fairly well with
theory for 0.0005��c /�i�0.003, showing the proportional
relation of dw /dt and �c. Simulations with larger collision
rates are more demanding, since the size of the random
change in the pitch-angle variable � in a time step �t is
proportional to ��c�t. Smaller �t has to be used for larger �c
to approximate the diffusive process in pitch-angle scatter-
ing. The fact that for �c /�i�0.004 simulation results are
less than Eq. (35) is not well understood at this time. It is
plausible that for larger �c values the plasma enters the col-
lisional regime, and the semicollisional kinetic theory begins
to fail.

FIG. 7. Nonlinear evolution of semicollisional tearing mode. Lx=10�i, Ly
=10.28�i, a=�i, �=1%, and C1=−0.02vte. �c=0.003�i.
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After the algebraic growth stage we see the instability
finally saturates at about w=a, which is much bigger than the
collisionless saturation level. White et al.9 first studied the
saturation of nonlinear resistive tearing mode and it has also
been observed in experiment.24 In Fig. 9 we show simulation
results of the saturation levels with different collision fre-
quencies. Simulations at larger collisionality are difficult be-
cause as the saturation level increases �f / f becomes large
and the benefit of �f algorithm is lost, thereby requiring a
much larger number of particles. Because of these numerical
constrains we have limited our simulation time. However,
particle number convergence has been tested. Also, the very
weak collisionality regime is very important for many toka-
mak plasmas. Figure 9 indicates the saturation level is de-
pendent on �c, and the higher �c, the higher saturation level.
It is understandable that in the transition from the collision-
less regime to collisional regime, for smaller collisional fre-
quency the saturation level is smaller, because finally when

�c is zero, we have the collisionless saturation level, which is
at w=0.14�i, and much smaller than the saturation levels of
semicollisional tearing mode presented here. Recent studies
with reduced MHD theory13,14 show that in the limit of small
w compared to current width, the saturation level is propor-
tional to �� and independent of resistivity. If these theories
are applied the collisional saturation level should be at w
=1.22��a2, larger than the semicollisional saturation levels
observed here. It is reasonable to expect that for larger �c’s
the saturation levels will converge. However, we note that in
our simulation a=�i is small and at the saturation level w is
comparable to a, thus the MHD theories cannot be applied.

VI. SUMMARY

The evolution of the collisionless and semicollisional
tearing mode was studied using a recently developed �f
particle-in-cell simulation model. Linear simulation results
are benchmarked with eigenmode analysis for the case of
fixed ions. A double humped eigenmode structure was ob-
served in both the eigenmode analysis and simulation corre-
sponding with positive ��. Simulation results compared fa-
vorably to theory in linear growth rate, nonlinear saturation
level and electron bounce frequency. In simulations with a
narrow current layer �a��i�, we verified the assumption that
the ions response can be neglected. The semicollisional tear-
ing mode was studied by including electron-ion collisions
and the nonlinear algebraic growth was observed in simula-
tion for the first time. The algebraic growth rate scaling with
collisionality agrees quantitatively with theory at small col-
lisionality. Nonlinear saturation following the algebraic
growth phase was observed. These are promising results and
we plan to extend this work to three dimensions and larger
island size in the near future.
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