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The influence of the parallel nonlinearity on transport in gyrokinetic simulations is assessed for

values of �* which are typical of current experiments. Here, �*=�s /a is the ratio of gyroradius, �s,

to plasma minor radius, a. The conclusion, derived from simulations with both GYRO �J. Candy and
R. E. Waltz, J. Comput. Phys., 186, 585 �2003�� and GEM �Y. Chen and S. E. Parker J. Comput.
Phys., 189, 463 �2003�� is that no measurable effect of the parallel nonlinearity is apparent for
�*�0.012. This result is consistent with scaling arguments, which suggest that the parallel

nonlinearity should be O��*� smaller than the E�B nonlinearity. Indeed, for the plasma parameters

under consideration, the magnitude of the parallel nonlinearity is a factor of 8�* smaller �for
0.000 75��*�0.012� than the other retained terms in the nonlinear gyrokinetic equation.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2220536�

It is normally assumed in both flux-tube
1–6
and global

7,8

gyrokinetic simulations that the effect of the so-called paral-

lel nonlinearity
9
is negligible for modern tokamak plasmas

�such as DIII-D, Ref. 10, and the Joint European Torus11�.
The gyrokinetic ordering

12
shows that the parallel nonlinear-

ity is a factor of �*=�s /a smaller than the dominant linear

and nonlinear terms in the gyrokinetic equations.
12–14

Here,

�s�cs /�ci is the ion-sound gyroradius, �ci=eB /mi is the ion

gyrofrequency, mi is the ion mass, and cs��Te /mi is the ion

sound speed. However, some authors
15,16

note the utility of

retaining the parallel nonlinearity in particle-in-cell �PIC�
simulations so that a formal energy conservation law

17–20
can

be derived and monitored. It is claimed that this is a useful

means by which to estimate the error generated by discrete

particle noise.
21

Going beyond simple error estimation, the authors of

Ref. 22 made a systematic attempt to measure the effect

of the parallel nonlinearity at different values of �*. This

study, based upon global simulations with the UCAN code,
23

found that at very large relative gyroradius ��*=1/90� the
parallel nonlinearity leads to a distinct reduction in the

simulated field energy. In contrast, at double the system size

��*=1/180� the reduction was found to be “much dimin-
ished.” The observation of some effect at �*=1/90 is osten-

sibly in agreement with other global simulations.
9
Curiously,

none of the studies that we are aware of shows results for the

ion energy flux, which ought to be the quantity of greatest

concern. Global PIC simulations which do show results for

the ion energy flux have been carried out at �*=1/125 by

Lee
24,25

for parameters representative of the Cyclone base

case.
26
In this work, which motivated the present paper, the

parallel nonlinearity was found to enhance the zonal flow

level and reduce the energy flux.

In this paper we report the results of both Eulerian �con-
tinuum� and particle-in-cell �PIC� simulations which mea-
sure the effect of the parallel nonlinearity over a wide range

of �*. A feature of such studies which must be borne in mind

is that, at some sufficiently small value of �*, the results with

and without the parallel nonlinearity ought to be identical.

This requirement is a consequence of the gyrokinetic order-

ing �see, for example, Eq. �2� of Ref. 9�. Thus, if the effect of
the parallel nonlinearity does not vanish as �*→0, one must

conclude that either the simulations are fundamentally

flawed, or that the gyrokinetic ordering itself has been vio-

lated. Because typical simulations �without the parallel non-
linearity� achieve a clean, robust steady state with no viola-
tion of the gyrokinetic ordering, obtaining such a uniform

limiting behavior ought to be carried out by researchers to

check validity of simulations which include the parallel non-

linearity. In what follows we will define precisely what we

mean by the term parallel nonlinearity, and give some con-

sideration to its intrinsic conservation properties. These con-

siderations turn out to be necessary to obtain a stable dis-

cretization scheme for inclusion of the new nonlinearity into

GYRO. The literature reporting results with the parallel

nonlinearity
9,22,24

has been limited to simulations with a sim-

plified �adiabatic� electron response. For this reason, we
similarly limit our discussion and thus do not discuss the

effect of the parallel nonlinearity on electrons.

In order to precisely define our terminology, we make a

brief digression and write the gyrokinetic equation in conser-

vative form using �R ,v� ,�� coordinates following Beer27

��BF�

�t
+ � · �BFṘ� +

�

�v�

�BFv̇�� = 0. �1�

Here, �=v
�

2 / �2B� is the magnetic moment. In the low-�
limit we can make use of the identity

� � B = B � � b + �B � b = 0 �2�

to express the guiding-center velocity and acceleration in the

form
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Ṙ � v�b + vd + vE, �3�

v̇� � −
e

mi

b · ��� − �b · �B + v�

vE · �B

B
. �4�

Physically, the quantities above are time derivatives along

the phase flow of the system. On the right-hand side of Eqs.

�3� and �4�, the drift velocities are written as

vd �
v�
2 + �B

�ciB
b � �B and vE �

1

B
b � ��� . �5�

It is straightforward to show that the gyrokinetic-Liouville

theorem
18
is satisfied,

� · �BṘ� +
�

�v�

�Bv̇�� = 0. �6�

The connection between conservative and nonconservative

forms can be seen clearly by rewriting Eq. �1� as

�7�

Following the notation and definitions in Ref. 20, we expand

F=F0+h, where F0�O�1� represents the equilibrium Max-
wellian distribution and h�O��� are the turbulence-induced
fluctuations. Equilibrium flows are neglected in the present

work, so that ���O���. Given these orderings, the guiding-
center velocity and parallel acceleration can be split into

v̇� = v̇�
�0� + v̇�

�1� �8�

Ṙ = Ṙ�0� + Ṙ�1�, �9�

where a 0 superscript denotes an O�1� term, and a 1 super-
script denotes a O��� term. After making this expansion, we
can identify the O��2� contribution to Eq. �7�

�10�

This expression shows that the nonlinear terms in the gyro-

kinetic equation are naturally separable into two conservative

nonlinear contributions, which we call the perpendicular

nonlinearity and parallel nonlinearity �PNL�, respectively,

perpendicular nonlinearity:
1

B
� · �hb � ���� , �11�

parallel nonlinearity:
�

�v�

�h�− e

m
b − v�

b � �B

B2
� · ���� .

�12�

The form of the PNL as written above shows that it mani-

festly conserves density. It is crucial that this feature be re-

flected in any numerical algorithm that is used to evaluate

the nonlinearity. In GYRO, we observe a violent numerical

instability if the PNL is differenced in a nonconservative

manner.

A further remark about tokamak transport modeling is in

order. Starting from the primitive full-F Fokker-Planck �FP�
equation, one can derive a rigorous energy density �W� con-
tinuity equation,

28,29

�W

�t
+ � ·Q = H + S . �13�

Here, Q is the turbulent energy flux, H=�j ·�E is the turbu-

lent heating, and S represents the atomic and other external

sources. We emphasize that H arises directly from the paral-

lel nonlinearity in the FP equation, as discussed in detail in

Ref. 28. Steady-state profiles are obtained as the solution of

the problem in the limit � /�t→0. Presently, gyrokinetic

codes solve the relatively simple reduced problem of com-

puting h given fixed F0, rather than the self-consistent prob-

lem of finding F=F0+h given S. To solve Eq. �13� when
computing h given F0, one would first evaluate the terms

Q�h� and H�h�, update F0, and repeat to convergence. A

remarkable finding of Ref. 28 is that, on transport space- and

time scales, H and S enter at the same order in �* in Eq. �13�,
thus making it important to retain the PNL �via H� in the
transport equation. However, on turbulence space- and time

scales, the PNL enters Q at lower order in �* than the domi-

nant terms. This reasoning leads us to the tentative conclu-

sion that the natural place to include the PNL is in the trans-

port equation �as an effective source� and not in the

gyrokinetic equation for h. Thus, the present paper is simply

a numerical verification of this ordering argument.

The GYRO
30
simulations presented herein use the

GA standard case parameters.
31
These are a /LTi=3.0,

a /Lni=1.0, R /a=3.0, r /a=0.5, s=1, q=2, and Te=Ti.

Simple unshifted circular geometry and nonperiodic bound-

ary conditions are used. Here, a and R are the plasma minor

and major radii, respectively. To ensure smoothness in

velocity-space, GYRO simulations also include a small

amount of ion-ion collisions �pitch-angle scattering�:
�a /cs��ii=0.01. The perpendicular box size is �Lx ,Ly� /�s

= �130,130�, such that x→r is the radial coordinate and is

the second coordinate perpendicular to B. We have defined

the box size in units of the ion sound gyroradius,

�s�cs /�ci, with cs��Te /mi the ion sound speed. We use

nx=128 radial gridpoints, so that �x=�s, and nn=16 complex

toroidal modes such that 0�ky�s�0.72. The parallel resolu-

tion is set to n�=10 points per passing orbit �i.e., per sign of
velocity�. Finally, we use a 128-point velocity-space grid �8
energies, 8 pitch angles, and 2 signs of velocity�. The maxi-
mum simulated energy is ��6Ti /mi. This velocity-space

resolution is typical of GYRO production runs.
1,32,33

Further-

more, the GYRO velocity grids are highly structured, so as to

provide maximal accuracy in the calculation of integrals of

the distribution function.
30
The GEM �Ref. 6� simulations, on

the other hand, use the Cyclone base case parameters.
26,34

These are a /LTi=2.5, a /Lni=0.8, R /a=2.8, r /a=0.5, s=0.8,

q=1.4, and Te=Ti. Simple unshifted circular geometry and

periodic boundary conditions are used. The perpendicular
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box size was �Lx ,Ly� /�s= �256,256� at a velocity-space reso-
lution of 32 particles-per-cell �PPC�. Thus, the area of the
perpendicular box is four times larger than in GYRO, while

the number of velocity-space points per real-space cell is

four times smaller.

First, we performed GYRO simulations spanning a physi-

cally relevant interval in �*; namely �*= �0.000 75,
0.0015,0.003,0.006,0.012�. Simulations were carried out
over the time interval 0� �cs /a�t�1500 and data were aver-
aged over 200� �cs /a�t�1500. It was decided to run very
long simulations in order to minimize statistical error. Figure

1 compares simulations with the parallel nonlinearity absent

�solid curve� to simulations with the parallel nonlinearity in-
cluded �dotted curve�. The result is that, within statistical
uncertainty, the parallel nonlinearity does not have a discern-

ible effect on the ion heat diffusivity. We remark that the

solid curve is expected, a priori, to be independent of �*
since the equations contain no explicit �* dependence �this is
a well-known feature of the local limit�. Thus, the �* varia-

tion in the solid curve is statistical in nature, and ought to

vanish as the simulation time increases further.

It is illuminating to look more closely at the added term,

Eq. �12�, by comparing its size in an absolute norm to the

size of the full right-hand side �RHS� of the gyrokinetic
equation. In detail, we write the ion gyrokinetic equation

schematically as

�h

�t
= RHS = RHSmain + RHSPNL, �14�

where RHSmain represents the terms normally retained in the

gyrokinetic ordering
12
and RHSPNL is given by the negative

of Eq. �12�. It is well-known that RHSPNL is one order in �*
smaller than the RHSmain, and this feature is clearly reflected

in the results plotted in Fig. 2. A fixed scaling �with magni-
tude of approximately 8�*� in �* is obtained over almost the

entire simulated range—with only a very weak breaking of

the scaling at the largest value �*=0.012. The �somewhat
unphysical� norm is defined as a sum over all gridpoints

�RHS� �
1

np
�
p=1

np

�RHSp� with p = �R,�,�� . �15�

Even though the size of the PNL in this absolute norm is

10% of the entire right-hand side, the effect on transport is

insignificant. One might speculate that is perhaps related to

the fact that the PNL is a density-conserving perturbation

�i.e., the PNL conserves density at every point in space�.
Next, independent simulations were carried out with the

GEM code at a single value of �*=0.0028. Unlike the GYRO

simulations, the GEM runs used the Cyclone base case

parameters.
26
Since the simulations were local, the radial av-

erage of the n=0 component of the gyrokinetic equation,

1

L
�
0

L

dr �RHSPNL�n=0, �16�

was subtracted from the total right-hand side to enforce ra-

dial periodicity. Simulations were run over the interval

0� �cs /a�t�500, as shown in Fig. 3. Taking time averages
over the range 100� �cs /a�t�500 gives the results �i /�GB
�1.7 �PNL off, solid curve� and �i /�GB�1.8 �PNL on, dot-
ted curve�. Like the GYRO results, the GEM simulations do not
show a difference that is statistically significant; that is, the

deviation between the two runs is comparable to the ex-

FIG. 1. GYRO �* scan comparing simulations with parallel nonlinearity on

�dotted line� to off �solid line�. No significant effect is observed over the
entire simulated range.

FIG. 2. Magnitude of the parallel nonlinearity compared to the entire right-

hand side of the gyrokinetic equation for the scan shown in Fig. 1.

FIG. 3. GEM data comparing simulations with parallel nonlinearity off �solid
line, with time-average �i /�GB�1.7� and on �dotted line, with time-average
�i /�GB�1.8�. The difference is not significant.
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pected difference between two runs with identical physics

and different initial conditions. Thus, we have arrived at the

same conclusion using different numerical algorithms �Eule-
rian and PIC� with substantially different simulation resolu-
tions. As we have emphasized earlier, the final result is un-

surprising. Given that the parallel nonlinearity is small in

magnitude and, with respect to a rigorous ordering, formally

negligible, it would indeed be worrisome if the PNL had a

significant effect in simulations.

In summary, we emphasize

�1� The parallel nonlinearity is formally one order in �*
smaller than the effects normally included in gyrokinetic

simulations.

�2� Neither GYRO nor GEM measures a significant effect of
the parallel nonlinearity over the range 0.0075��*
�0.012.

�3� Our experience indicates that simulations which include
the parallel nonlinearity must ensure that the numerical

treatment is manifestly density conserving.
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