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Particle orbits in the
multidipole device

A simple way to make plasma is to place a
heated emissive filament inside of a vacuum
chamber with about 1 mTorr of gas. The
filament is biased negatively and the electrons
from the filament ionize the gas. The plasma
density can be increased by lining the inside
of the vacuum chamber with rows of magnets
parallel to the cylinder axis. The rows of
magnets should have alternating polarity as
shown in the figure (see ref. 1). The filament is
the zigzag line. 

The magnetic field will be modeled by
replacing each row of magnets with two wires
in parallel, carrying opposite currents and
separated by a distance comparable 
to the width of the magnet. 

Assume a wire separation d, about the width of the magnets.
Half way between the two wires, the field of one of these wires is I /2(d/2) =  I /d. 

Then for two wires, B half way between them is 2I /d.

Then I = Bd /2 is the current in the wires to create a magnetic field equivalent to that of

the magnets. A typical field at the magnet surface is 1000 Gauss or 0.1 Tesla. 

d 0.01 The wire separation is 1 cm. μ0 4 π 10
7

 A familiar constant.

Bmax 0.1 The maximum field in Teslas. 

This is the current in the wires to get the desired field. 
I

Bmax π d

2 μ0


I 1.25 10
3

 amps This is the current to make the same field as the permanent magnets. 
This is a large current that would require water-cooled conductors. 
Permanent magnets are thus an advantage. 

r 0.15 Radius of cylindrical vacuum chamber in meters.

Polar coordinates will be used for the magnet locations. We need to decide the angular
separation between the wires that mimic the magnets. The half angle of separation is half the
separation d divided by r.

θsep
d

2 r
 θsep 0.033 The half angle of the separation. 
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Find and plot the wire locations:  

The wires are located around a circle with radius r. The angular locations of the magnet rows
are multiples of /4 radians. The wires in one pair have a spacing of  + 0.03 radians,
approximately. With a radius of 0.15 m, this corresponds to 1 cm, about the width of the
magnets. 

kmax 8 This is the number of rows of magnets.

Define the angular locations of the midpoints of the rows of wires which mimic the magnets: 

k 0 kmax 1 θ
k

k

kmax






2 π

Convert r,  locations to x,y locations: xwire θ( ) r cos θ( ) ywire θ( ) r sin θ( )

In a pair of wires, wire1 carries positive current and wire2 carries negative current. 

xwire1
k

xwire θ
k

θsep  ywire1
k

ywire θ
k

θsep  Positive wire locations.

xwire2
k

xwire θ
k

θsep  ywire2
k

ywire θ
k

θsep  Negative wire locations. 

Plot of the locations of the pairs of wires: 

0.2 0.1 0 0.1 0.2
0.2

0.1

0

0.1

0.2

ywire1k

ywire2k

xwire1k xwire2k

These stacks are the combined lists of the
wire locations, for plotting later. 

xwires stack xwire1 xwire2( )

ywires stack ywire1 ywire2( )
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Calculate the B fields of the wire pairs: 

We will plot the B vectors on an x,y grid with a grid spacing of 1 cm. The radius of the cylinder
is 15 cm, thus we will go from -0.16 m to 0.16 m.  

imax 32 The maximum value of the counter for the number of grid points. 

i 0 1 imax the x counter j 0 1 imax the y counter

x
i

0.16 0.32
i

imax
 y

j
0.16 0.32

j

imax
 These define the x,y grid 

from -0.16 m to +0.16 m. 

X0 is x, 

X1 is y
Our x,y vector coordinate is X

0.1

0.1











In terms of the components of X, the radial distance is: r X( ) X
0 2 X

1 2

The field of one wire:

The if statement in this definition prevents an 
error if a divide by zero should occur. Bθ X( ) if r X( )( ) 0

μ0 I

2 π r X( )
 10

4












These are the x and y components of B. Note that Bx = (-y/r)B and By = (x/r)B.

Bx X( )
X( )

1
Bθ X( )

r X( )
 By X( )

X
0

Bθ X( )

r X( )


Sum the fields of the pairs of wires to get the multidipole field: 

The two Bx values in parentheses below are the values for each of the wires in the pair. 

We sum over kmax pairs of wires. 

BX x1 y1( )

k

cos k π( ) Bx

x1 xwire1
k



y1 ywire1
k



















Bx

x1 xwire2
k



y1 ywire2
k







































BY x1 y1( )

k

cos k π( ) By

x1 xwire1
k



y1 ywire1
k



















By

x1 xwire2
k



y1 ywire2
k







































The cos (k alternates the sign of the rows of magnets.
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Vector plot of the magnetic field: 

The matrices MX and MY will contain the values of Bx and By at the grid points. 

MX
i j BX x

i
y

j
  MY

i j BY x
i

y
j

 

Arrow length: Mathcad scales the length of the arrows in a vector plot so that the longest one
is one grid spacing. We will change the length of the arrow to the fourth root of the arrow
length, which gives a nicer looking plot. (The short arrows are not too short to see.) If we do
not do this, all the arrows will be about zero length except for the longest ones near the wire
pairs. First, convert the vector components from x,y coordinates to polar coordinates. ABS1
will be the absolute value of the vector length and ANG will be the angle of the vector.   

ANG
i j angle MX

i j MY
i j  ABS1

i j MX
i j 2 MY

i j 2

MX2
i j cos ANG

i j  4
ABS1

i j  new x length of arrow.

new y length of arrow.
MY2

i j sin ANG
i j  4

ABS1
i j 

RADIUS 0.14 Only plot vectors located inside the chamber radius. Set others to zero: 

MX2
i j if x

i 2 y
j 2 RADIUS

2
 MX2

i j 0





MY2
i j if x

i 2 y
j 2 RADIUS

2
 MY2

i j 0





Question: What would be wrong with taking the fourth root of the components of the vectors 
MX and MY?

Also plot the magnetic vector potential: 

An alternate way to visualize field lines is to plot the magnetic vector potential A. The magnetic
field lines lie on surfaces of constant A. For a wire parallel to the z axis, the vector potential has
only an axial z component Az, and this varies logarithmically with distance. 

The vector potential  of one wire. The
constant of integration is set to zero.

From B = -dAz/dr, we find: Az X( )
μ0 I

2 π
ln r X( ) 

Z-component of the vector potential of the array of 8 pairs of wires: 

AZ x1 y1( )

k

cos k π( ) Az

x1 xwire1
k



y1 ywire1
k



















Az

x1 xwire2
k



y1 ywire2
k







































MAZ
i j AZ x

i
y

j
  An array of vector potential values for plotting. 
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Vector B field plot for the multidipole device 

MX2 MY2( )

Vector potential plot

MAZ

This plot of the vector 
potential contains nearly
the same information as
the B field vector plot.
In this plot, the field
outside the chamber is
shown. 

The vector potential Az is

zero on the midplanes
and on the diagonals.  
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Use Runge-Kutta to find the electron motion:  

Electron properties: q 1.6 10
19

 me 9.11 10
31

 qmratio
q

me


W 1 q W is the electron kinetic energy, assumed to be 1 eV.

v
2 W

me


v 5.927 10
5

 Electron velocity corresponding to 1 eV. 

Pick starting X and V vectors for the electron:
We will stack the derivatives of x, y, and z 
above the derivatives of Vx, Vy and Vz and 

call the new 6-vector Z, below. The starting values
at right were selected by trial and error to give
nice looking plots.  

X3

0.03

0.05

0











 V3

0.4 v

0

v













Z stack X3 V3( )

Z is our 6-vector: DZ is the derivative of the 6-vector Z
and contains the Lorentz force:

dx/dt
dy/dt
dz/dt

dVx/dt
dVy/dt
dVz/dt

Z

0.03

0.05

0

2.371 10
5



0

5.927 10
5























 DZ t Z( )

Z
3

Z
4

Z
5

qmratio Z
5

BY Z
0

Z
1

  

qmratio Z
5

BX Z
0

Z
1

  

qmratio Z
3

BY Z
0

Z
1

  Z
4

BX Z
0

Z
1

  



























Time step for the Runge Kutta: 

The absolute value of the B field at the starting location is: 

Babs BY Z
0

Z
1

 2 BX Z
0

Z
1

 2 Babs 2.081 10
4



The gyro frequency at the starting location: Ω qmratio Babs Ω 3.655 10
7



We will integrate for 10 gyro periods: t 10
2 π

Ω







 t 1.719 10
6

 seconds

The number of iterations needed is about 4 per gyro period or 8  per orbit.

npoints ceil 4 Ω t( ) npoints 252
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The B field is not uniform, so our time step should be shorter in regions of high field. 
Thus to be conservative, we will greatly increase the number of points, which will decrease the
time step: 

npoints 4 npoints

This is the approximate
 Larmor radius: LarmorRadius

v

qmratio Babs( )
 LarmorRadius 0.016

Now integrate to find the trajectory: F Rkadapt Z 0 t npoints DZ( )

This is a view down the axis of the device showing the wires and the mirroring of the electron.
Only the top half plane is plotted.  

0.1 0 0.1
0

0.05

0.1

0.15

F
2 

ywires

F
1 

xwires

This is the anwer matrix F containing the electron positions and velocities: 

t                 x               y                 z               Vx              Vy              Vz

F

0 1 2 3 4 5 6
0
1
2
3
4
5
6
7

0 0.03 0.05 0 52.371·10 0 55.927·10
-91.705·10 0.03 0.05 -31.011·10 52.349·10 43.71·10 55.924·10
-93.411·10 0.031 0.05 -32.019·10 52.322·10 47.457·10 55.899·10
-95.116·10 0.031 0.05 -33.021·10 52.289·10 51.124·10 55.852·10
-96.821·10 0.032 0.051 -34.014·10 52.251·10 51.505·10 55.781·10
-98.527·10 0.032 0.051 -34.991·10 52.209·10 51.888·10 55.683·10
-81.023·10 0.032 0.051 -35.95·10 52.165·10 52.272·10 55.558·10
-81.194·10 0.033 0.052 -36.886·10 52.118·10 52.657·10 ...


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The electron also drifts along z, as a consequence of the grad B drift. Below is a view looking
along the x axis. The left and right sides of this plot are two ends of the cylindrical volume.
The Runge-Kutta method does not conserve the magnetic moment very well, and part of the
irregularity seen below is from the accumulation of error. The peaks in the y direction are from
the electron approaching the pair of wires at the top of the previous figure. 

0 0.05 0.1 0.15 0.2
0.04

0.05

0.06

0.07

0.08

0.09

0.1

F
2 

F
3 

Using interpolation to find B field values: 

Above we calculated the values of Bx and By at every location of the electron. We can save time

in our calculation by interpolating, using values previously calculated at the grid points. 
We will use the Mathcad cspline function which fits cubic polynomials to the B field values.

Put the x,y locations of the grid points into a two-column matrix: Mxy augment x y( )
rows MX( ) 33

Fit cubic splines separately to the x and y components of the B fields that were stored in
matrices MX and MY: 

vx cspline Mxy MX( ) vy cspline Mxy MY( )

Define functions bx and by that find the B field components between grid points by interpolation: 

bx x y( ) interp vx Mxy MX
x

y

















 by x y( ) interp vx Mxy MY
x

y



















Use the interpolated fields in a
new Runge-Kutta routine. 

At right, the vz By(x,y) component

of the Lorentz force is written 
Z5*by(Z0,Z1).

DZ t Z( )

Z
3

Z
4

Z
5

qmratio Z
5

by Z
0

Z
1

  

qmratio Z
5

bx Z
0

Z
1

  

qmratio Z
3

by Z
0

Z
1

  Z
4

bx Z
0

Z
1

  


























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Find the trajectory using the interpolated fields: F Rkadapt Z 0 t npoints DZ( )

The trajectory calculated from interpolated B field values will be less accurate, but the calculation
time will be reduced. . 

Trajectory from interpolated values of B: 

0.1 0 0.1
0

0.05

0.1

0.15

F
2 

ywires

F
1 

xwires

Chaotic orbit: 

Suppose a particle begins near the center of the multidipole field. The field B value will be very
small and the Larmor radius will be very large. The magnetic moment will not be conserved
because the magnetic field changes in a length comparable to the Larmor radius. 
This starting Z vector begins the particle near the origin. 

We will integrate for 30 gyro periods:

t 30
2 π

Ω







 t 5.157 10
6

 seconds
Z

0.01

0.01

0

0.4 v

0

v





















Use Runge-Kutta to find the trajectory: F Rkadapt Z 0 t npoints DZ( )
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Trajectory of an electron beginning near the axis: 

0.1 0 0.1

0.1

0

0.1

F
2 

ywires

F
1 

xwires

About momentum conservation:
The canonical momentum pz = mvz+qAz is conserved because the fields are independent of z.

Thus vz = qAz/m + a constant.  The absolute value of the axial velocity vz is constrained. It

cannot grow larger than the value vz = SQRT(2W/me) determined by the initial kinetic energy W

of the electron (recall that B does no work). Thus the electron will never be found in regions
where Az is much different from the starting value. The most forbidden regions are near the wall

half way between the wire pairs. If the electron is lost to the wall, it will be in a region of the wall
where Az is near zero. This occurs on the axes of symmetry which pass down the middle of the

pairs of wires. If the electron is created on a surface with value Az, it can stray a distance in Az

given by dAz = qvz/m. The z component of v will vary from +vz to -vz as the electron orbits the

field line. The distance in real space that it can stray is dr = (qvz/m) /(dAz/dr) = qvz/mB. In other

words, the electron remains within about one Larmor radius of the surface with the starting value
of Az. Note that pz is conserved even though the magnetic moment is not conserved near the

axis. 

References for multidipole devices: 
1. R. J. Taylor, K. R. MacKenzie, and H. Ikezi, Rev. Sci. Instrum. 43, 1675 (1972). 
2. E. R. Ault and K. R. MacKenzie, Rev. Sci. Instrum. 44, 1697 (1973).


