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Landau's dispersion relation and Landau damping

The dispersion relation for electrostatic plasma waves is
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where f (v) is the distribution function, p is the plasma frequency, vt is the thermal velocity, vt
2

= 2T/m, and T is the temperature in energy units. The black square means that the expression
is not evaluated. 

The distribution function f(vx, vy, vz) is assumed to be Maxwellian. The distribution may be

integrated over vy and vz to obtain
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  where u = vx/vt. The dispersion relation is then:  
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This can be rewritten as: with the definitions
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and, in terms of functions in Chen's textbook: 
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The real part of the W function, Wr, is defined as the Principal Value integral:

δ 0.01

where  is a small quantity which is
used to avoid the singularity. Wr ζ( )
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The value of the integral is nearly independent of the value of   along as  is small. 
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ζ 4 3.95 4 Plot of the real part of W()
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Remember that the dispersion relation is:
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W ζ( ) Let's simplify the math by letting: ωp 1 vt 1

The dispersion relation (k) is 
found from the roots of 
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Let's find (k,) for k 0.5

Use these trial values for : ω 1 1.1 3
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(k,) crosses zero near 1.2, so this is the value of  that satisfies the dispersion relation
for k = 0.5. 
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Now let's find  for other values of k using the root finder. We will search between  = 1 and  = 2. 

ωr k( ) root ε k ω( ) ω 1 2( ) ωr k( ) 1.214 This is near the 1.2 we found above.

Try it: Type in a different value for the  that is used in the principal value integral and see if

r(k) is changed. Does it matter if  is changed from 0.01 to 0.1 or 0.001? 

Plot r(k) for these values of k: k 0.02 0.04 0.5

The wave frequency from fluid theory of waves is: ωfluid k( ) ωp
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Kinetic and fluid disperison relations
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The fluid theory for electrostatic waves and the kinetic theory give nearly the same result for small k. 

How does the principal value integral compare with the power series?

Here is the principal value 
integral again: 
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Here is the power series 
expansion of the denominator 
for small x/. wr ζ( )
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In the figure on the next page, these two expressions are compared.
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Define a range of values to be used for : z 0 0.1 4 zz 1.3 1.4 4
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The two curves converge for large values of  for which the power series is valid. 

The Landau damping is found from the imaginary part of W

Now let's look at the imaginary part of W() which we will call Wi().
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Using Wi, it is easily shown that i is:

(i is the imaginary part of ) 
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Plot i(k) for these k values: k 0.24 0.26 0.5
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Plot of the imaginary part of  as a
function of the wavenumber k. First
a linear plot then a logarithmic plot.
Waves with larger k (short
wavelength) are heavily damped.  
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Now plot again on a log scale (and change the sign before taking the logarithm). 

Landau damping as a function of wavenumber:
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Waves with k > 0.4 are strongly damped and those with k < 0.3 (long wavelength) have little
damping.


